plasm-ph] 2 Jun 2022

SiCS

2206.01074v1 [phy

arXiv

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022): DRAFT

atoMEC: an open-source average-atom Python code

Timothy J. Callow*3*, Daniel Kotik*?, Eli Kraisler!, Attila Cangi*®

Abstract—AVeragesatonimodels are an important tool in studying matter under
extreme conditions; such as those conditions experienced in FlEHCEINIGOIES]
ERNEHENRENEWERS and during inertial confinement fusion. In the right
context, average-atom models can yield results with similar accuracy to simu-
lations which require orders of magnitude more computing time, and thus they
can greatly reduce financial and environmental costs. Unfortunately, due to the
wide range of possible models and approximations, and the lack of open-source
codes. average-atom models can at times appear inaccessible. In this paper, we
present our open-source average-atom code, atoMEC, We explain the aims and
structure of atoMEC to illuminate the different stages and options in an average-
[BieMmICaIGHIE R, and facilitate community contributions. We also discuss the

use of various open-source Python packages in atoMEC, which have expedited
its development.

Index Terms—computational physics, plasma physics, atomic physics, materi-
als science

Introduction

The study of matter under extreme conditions - materials exposed
to high temperatures, high pressures, or strong electromagnetic
fields - is critical to our understanding of many important scientific
and technological processes, such as nuclear fusion and various
astrophysical and planetary physics phenomena [GFG™16]. Of
particular interest within this broad field is the warm dense
matter (WDM) regime, which is typically characterized by tem-
peratures in the range of 10° —10° degrees (Kelvin), and den-
sities ranging from dense gases to highly compressed solids
(~0.01—1000 g cm~3) [BDM™"20]. In this regime, it is important
to account for the quantum mechanical nature of the electrons (and
in some cases, also the nuclei). Therefore conventional methods
from plasma physics, which either neglect quantum effects or treat
them in a coarse manner, are usually not sufficiently accurate.
On the other hand, methods from condensed-matter physics and
quantum chemistry, which account fully for quantum interactions,
typically target the ground-state only, and become computationally
intratactable for systems at high temperatures.

Nevertheless, there are methods which can, in principle, be
applied to study materials at any given temperature and den-
sity whilst formally accounting for quantum interactions. These
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methods are often denoted "first-principles" because, formally
speaking, they yield the exact properties of the system, under cer-
tain well-founded theoretical approximations. Density-functional
theory (DFT), initially developed as a ground-state theory [HK64],
[KS65] but later extended to non-zero temperatures [Mer65],
[PPET11], is one such theory and has been used extensively to
study materials under WDM conditions [GDRT14]. Even though
DFT reformulates the Schrodinger equation in a computationally
efficient manner [Koh99], the cost of running calculations be-
comes prohibitively expensive at higher temperatures; formally,
it scales as ¢(N373), with N the particle number (which usually
also increases with temperature) and 7 the temperature [CRNB18].
This poses a serious computational challenge in the WDM regime.
Furthermore, although DFT is a formally exact theory, in prac-
tise it relies on approximations for the so-called "exchange-
correlation” energy, which is roughly speaking responsible for
simulating all the quantum interactions between electrons. Exist-
ing exchange-correlation approximations have not been rigorously
tested under WDM conditions. An alternative method used in the
WDM community is path-integral Monte-Carlo [DGB 18], which
yields essentially exact properties; however, it is even more limited
by compuational cost than DFT, and in particularly becomes
unfeasiable expensive at lower temperatures due to the fermion
sign problem.

It is therefore of great interest to reduce the computational
complexity of the aforementioned methods. Some examples of
promising developments in this regard include machine-learning
based solutions [SRH™12], [BVL"17], [EFP*21] and stochastic
DFT [CRNB18], [BNR13]. However, in this paper, we focus on
an alternative class of models known as "average-atom" models.
Average-atom models have a long history in plasma Physics
[CHKC22]: they account for quantum effects, typically using DFT,
but reduce the complex system of interacting electrons and nuclei
to a single atom immersed in a plasma (the "average" atom). An
illustration of this principle (reduced to two-dimensions for visual
purposes) is shown in Fig. 1. This significantly reduces the cost
relative to a full DFT simulation, because the particle number is
restricted to the number of electrons per nucleus, and spherical
symmetry is exploited to reduce the three-dimensional problem to
one-dimension.

Naturally, in order to reduce the complexity of the problem
as described, various approximations must be introduced. It is
important to understand these approximations and their limitations
in order for average-atom models to have genuine predictive
capabalities. Unfortunately, this is not always the case: although
average-atom models share common concepts, there is no unique
formal theory underpinning them and thus a variety of models
and codes exist, and it is not typically clear which models can be
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Fig. 1: lllustration of the average-atom concept. The many-body
and fully interacting system of electron density (shaded blue) and
nuclei (red points) on the left is mapped into the much simpler
system of independent atoms on the right. Any of these identical
atoms represents the "average-atom". The effects of interaction from
neighbouring atoms are implicitly accounted for in an approximate
manner through the choice of boundary conditions.

expected to perform most accurately under which conditions. In
a previous paper [CHKC22], we addressed this issue by deriving
an average-atom from first principles, and comparing the impact
of different approximations within this model on some common
properties.

In this paper, we focus on computational aspects of average-
atom models for WDM. We introduce atoMEC [CKTS'21]:
an open-source average-atom code for studying Matter under
Extreme Conditions. One of the main aims of atoMEC is to im-
prove the accessibility and understanding of average-atom models.
To the best of our knowledge, open-source average-atom codes
are in scarce supply: with atoMEC, we aim to provide a tool
which people can not only use to run average-atom simulations,
but also to add their own models and thus facilitate comparisons
of different approximations. The relative simplicity of average-
atom codes means that they are not only efficient to run, but also
efficient to develop: this means, for example, that they can be used
as a test-bed for new ideas that could be later implemented in full
DFT codes, and are also accessible to those without extensive prior
expertise, such as students. atoMEC aims to facilitate development
by following good practise in software engineering (for example
extensive documentation), a careful design structure, and of course
through the choice of Python and its widely used scientific stack,
in particular the NumPy [HMvdW"20] and SciPy [VGO'20]
libraries.

This paper is structured as follows: in the next section, we
briefly review the key theoretical points which are important
to understand the functionality of atoMEC, assuming no prior
physical knowledge of the reader. Following that, we present
the key functionality of atoMEC, discuss the code structure
and algorithms, and explain how these relate to the theoretical
aspects introduced. Finally, we present an example case study:
we consider Helium under the conditions often experienced in
the outer layers of a white dwarf star, and probe the behaviour
of a few important properties, namely the band-gap, pressure and
ionization degree.

Theoretical background

Properties of interest in the warm dense matter regime include the
equation-of-state data, which is the relation between the density,
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energy, temperature and pressure of a material [HRDO08]; the mean
ionization state and the electron ionization energies, which tell
us about how tightly bound the electrons are to the nuclei; and
the electrical and thermal conductivities. These properties yield
information pertinent to our understanding of stellar and planetary
physics, the Earth’s core, inertial confinement fusion, and more
besides. To exactly obtain these properties, one needs (in theory) to
determine the thermodynamic ensemble of the quantum states (the
so-called wave-functions) representing the electrons and nuclei.
Fortunately, they can be obtained with reasonable accuracy using
models such as average-atom models; in this section, we elaborate
on how this is done.

We shall briefly review the key theory underpinning the type
of average-atom models implemented in atoMEC. This is intended
for readers without a background in quantum mechanics, to
give some context to the purposes and mechanisms of the code.
For a comprehensive derivation of this average-atom model, we
direct readers to Ref. [CHKC22]. The average-atom model we
shall describe falls into a class of models known as ion-sphere
models, which are the simplest (and still most widely used) class
of average-atom model. There are alternative (more advanced)
classes of model such as ion-correlation [Roz91] and neutral
pseudo-atom models [SS14] which we have not yet implemented
in atoMEC and thus we do not elaborate on them here.

As demonstrated in Fig. 1, the idea of the ion-sphere model
is to map a fully interacting system of many electrons and
nuclei into a set of independent atoms which do not interact
explicity with any of the other spheres. Naturally, this depends
on several assumptions and approximations, but there is formal
justification for such a mapping [CHKC22]; furthermore, there
are many examples in which average-atom models have shown
good agreement with more accurate simulations and experimental
data [FB19], which further justifies this mapping.

Although the average-atom picture is significantly simplified
relative to the full many-body problem, even determining the
wave-functions and their ensemble weights for an atom at finite
temperature is a complex problem. Fortunately, DFT reduces this
complexity further, by establishing that the electron density - a
far less complex entity than the wave-functions - is sufficient to
determine all physical observables. The most popular formulation
of DFT, known as Kohn-Sham DFT (KS-DFT) [KS65], allows us
to construct the fully interacting density from a non-interacting
system of electrons, simplifying the problem still. Due to the
spherical symmetry of the atom, the non-interacting electrons -
known as KS electrons (or KS orbitals) - can be represented as a
wave-function that is a product of radial and angular components,

¢nlm(r) :an(r)ylm(67¢)7 6]
where n, [, and m are the quantum numbers of the orbitals, which
come from the fact that the wave-function is an eigenfunction of
the Hamiltonian operator; and ;" (6, ¢) are the spherical harmonic
functions. The radial co-ordinate r represents the absolute distance
from the nucelus.

We therefore only need to determine the radial KS orbitals
X,(r). These are determined by solving the radial KS equation,
which is similar to the Schrédinger equation for a non-interacting
system, with an additional term in the potential to mimic the
effects of electron-electron interaction (within the single atom).
The radial KS equation is given by

& 2d I(I+1)
[‘ (d? i

rdr r2
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We have written the above equation in a way that emphasizes that
it is an eigenvalue equation, with the eigenvalues &, being the
energies of the KS orbitals.

On the left-hand side, the terms in the round brackets come
from the kinetic energy operator acting on the orbitals. The vs[n](r)
term is the KS potential, which itself is composed of three different
terms,

n(x)x*  8F[n]
r>(x)  én(r)’

"Rws
vs[n](r):—%+47r/0 dx 3)

where r~ (x) = max(r,x), Rws is the radius of the atomic sphere,
n(r) is the electron density, Z the nuclear charge, and F[n] the
exchange-correlation free energy functional. Thus the three terms
in the potential are respectively the electron-nuclear attraction,
the classical Hartree repulsion, and the exchange-correlation (xc)
potential.

We note that the KS potential and its constituents are function-
als of the electron density n(r). Were it not for this dependence
on the density, solving Eq. 2 just amounts to solving an ordinary
linear differential equation (ODE). However, the electron density
is in fact constructed from the orbitals in the following way,

n(r) =2Y 20+ 1) fu (&, 11, T) | Xu ()], 4)
nl

where f,;(€,, U, ) is the Fermi-Dirac distribution, given by

1

REEPCTEnE )
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where 7 is the temperature, and u the chemical potential, which
is determined by fixing the number of electrons to be equal to
a pre-determined value N, (typically equal to the nuclear charge
Z). The Fermi-Dirac distribution therefore assigns weights to the
KS orbitals in the construction of the density, with the weight
depending on their energy.

Therefore, the KS potential which determines the KS or-
bitals via the ODE (2), is itself dependent on the KS orbitals.
Consequently, the KS orbitals and its dependent quantities (the
density and KS potential) must be determined via a so-called self-
consistent field (SCF) procedure. An initial guess for the orbitals,
XY (r), is used to construct the initial density n°(r) and potential
vJ(r). The ODE (2) is then solved to update the orbitals. This
process is iterated until some appropriately chosen quantities -
in atoMEC the total free energy, density and KS potential - are
converged, i.e. n' 1 (r) = ni(r), Vit (r) = vi(r), F*! = Fi, within
some reasonable numerical tolerance. In Fig. 2, we illustrate the
life-cycle of the average-atom model described so far, including
the SCF procedure. On the left-hand side of this figure, we
show the physical choices and mathematical operations, and on
the right-hand side, the representative classes and functions in
atoMEC. In the following section, we shall discuss some aspects
of this figure in more detail.

Some quantities obtained from the completion of the SCF pro-
cedure are directly of interest. For example, the energy eigenvalues
&, are related to the electron ionization energies, i.e. the amount of
energy required to excite an electron bound to the nucleus to being
a free (conducting) electron. These predicted ionization energies
can be used, for example, to help understand ionization potential
depression, an important but somewhat controversial effect in
WDM [STJ " 14]. Another property that can be straightforwardly

3

obtained from the energy levels and their occupation numbers is
the mean ionization state Z!,

Z= Z(ZZ + 1) fu (€n1, 1, T) (6)
n,l

which is an important input parameter for various models, such
as adiabats which are used to model inertial confinement fusion
[KDF"11].

Various other interesting properties can also be calculated
following some postprocessing of the output of an SCF calcu-
lation, for example the pressure exerted by the electrons and
ions. Furthermore, response properties, i.e. those resulting from
an external perturbation like a laser pulse, can also be obtained
from the output of an SCF cycle. These properties include for
example electrical conductivities [Stal6] and dynamical structure
factors [SPS™14].

Code structure and details

In the following sections, we describe the structure of the code
in relation to the physical problem being modelled. Average-atom
models typically rely on various parameters and approximations.
In atoMEC, we have tried to structure the code in a way that makes
clear which parameters come from the physical problem studied
compared to choices of the model and numerical or algorithmic
choices.

atoMEC.Atom: Physical parameters

The first step of any simulation in WDM (which also applies to
simulations in science more generally) is to define the physical
parameters of the problem. These parameters are unique in the
sense that, if we had an exact method to simulate the real system,
then for each combination of these parameters there would be
a unique solution. In other words, regardless of the model - be
it average atom or a different technique - these parameters are
always required and are independent of the model.

In average-atom models, there are typically three parameters
defining the physical problem:

o The atomic species
o The temperature of the material, 7
o The mass density of the material, py,

The mass density also directly corresponds to the mean dis-
tance between two nuclei (atomic centres), which in the average-
atom model is equal to twice the radius of the atomic sphere, Rys.
An additional physical parameter not mentioned above is the net
charge of the material being considered, i.e. the difference be-
tween the nuclear charge Z and the electron number N.. However,
we usually assume zero net charge in average-atom simulations
(i.e. the number of electrons is equal to the atomic charge).

In atoMEC, these physical parameters are controlled by the
Atom object. As an example, we consider Aluminium under
ambient conditions, i.e. at room temperature, T = 300 K, and
normal metallic density, pm, = 2.7 g cm™—>. We set this up as

from atoMEC import Atom

Al = Atom("Al", 300, density=2.7, units_temp="K")

By default, the above code automatically prints the output seen
in Fig. 3. We see that the first two arguments of the At om object

1. The summation in Eq. (6) is often shown as an integral because the
energies above a certain threshold form a continuous distribution (in most
models).
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Select physical parameters:

Al = Atom("Al", 300, density=2.7,

o Atomic species units_temp="K")

o Temperature
o Density or sphere radius

Choose model parameters e.g.:

. model = models.ISModel (Al,
« Boundary conditions bc="neumann", xfunc_id="1lda_x",
« Exchange-correlation functional unbound="quantum")

o Treatment of unbound electrons

Initialize SCF - choose calculation parameters e.g.:
. Ly output = model.CalcEnergy (3, 3,
o Radial grid size grid_params={"ngrid": 1500}),
o Number of orbitals mix_params={"mixfrac": 0.7})
o Convergence parameters

v

o ) orbs = staticKS.Orbitals (xgrid)
Initialize KS orbitals |X,;) orbs.compute (v_init, config.bc, init=
True, eig_guess=True)

Occupy orbitals with FD distribution RIREIE » orbs.occupy ()
-
v
. ) : dens = staticKS.Density (orbs)
Construct density, potential and total energy pot = staticKS.Potential (rho)
: energy = staticKS.Energy (orbs, rho)

No False :
: v
p
Construct and diagonalize Hamilti)nian to get KS : orbs.compute (pot, model.bc)
orbitals and energy eigenvalues: H |X,;) = &, |Xu1) : numerov.matrix_solve (pot, model.bc)
: .
¥
Energy, density and potential converged? e conv = convergence.SCF_conv (xgrid).
gy Y P g check_conv (energy, pot, dens)

True

SCF cycle

complete

Fig. 2: Schematic of the average-atom model set-up and the self-consistent field (SCF) cycle. On the left-hand side, the physical choices and
mathematical operations that define the model and SCF cycle are shown. On the right-hand side, the (higher-order) functions and classes
in atoMEC corresponding to the items on the left-hand side are shown. Some liberties are taken with the code in the figure in order to
improve readability. The dotted lines represent operations that are taken care of within the models.CalcEnergy function, but are shown
nevertheless to improve understanding.
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Welcome to atoMEC!
Atomic information:

Atomic species : Al

Atomic charge / weilght : 13 [ 26.982

Valence electrons 3

Mass density : 2.7 g cm”-3

Voronoi sphere radius 2.997 Bohr / 1.586 Angstrom
Electronic temperature : 0.00095 Ha / ©.02585 eV [ 300 K
Wigner-Seitz radius : 2.078 (Bohr)

Ionic coupling parameter 2.967e+04

Electron degeneracy parameter : 0.002228

Fig. 3: Auto-generated print
atoMEC.Atom object.

statement from calling the

are the chemical symbol of the element being studied, and the
temperature. In addition, at least one of "density" or "radius" must
be specified. In atoMEC, the default (and only permitted) units for
the mass density are g cm—3; all other input and output units in
atoMEC are by default Hartree atomic units, and hence we specify
"K" for Kelvin.

The information in Fig. 3 displays the chosen parameters in
common units, as well as some other information directly obtained
from these parameters. The chemical symbol ("Al" in this case)
is passed to the mendeleev library [menl4] to generate this data,
which is used later in the calculation.

This initial stage of the average-atom calculation, i.e. the
specification of physical parameters and initilization of the Atom
object, is shown in the top row at the top of Fig. 2.

atoMEC.models: model parameters

After the physical parameters are set, the next stage of the average-
atom calculation is to choose the model and approximations within
that class of model. As discussed, so far the only class of model
implemented in atoMEC is the ion-sphere model. Within this
model, there are still various choices to be made by the user.
In some cases, these choices make little difference to the results,
but in other cases they have significant impact; the user might
have some physical intuition as to which is most important,
or alternatively may want to run the same physical parameters
with several different model parameters to examine the effects.
Below we list some choices which are available in atoMEC,
approximately in decreasing order of impact (but this can depend
strongly on the system under consideration):

« the boundary conditions used to solve the KS equations

« the treatement of the unbound electrons, which means
those electrons not tightly bound to the nucleus, but rather
delocalized over the whole atomic sphere

« the choice of exchange and correlation functionals, the
central approximations of DFT [CMSY 12]

« the spin polarization and magnetization

We do not discuss the theory and impact of these different
choices in this paper. Rather, we direct readers to Refs. [CHKC22]
and [CKC22] in which all of these choices are discussed.

In atoMEC, the ion-sphere model is controlled by the
models.ISModel object. Continuing with our Aluminium ex-
ample, we choose the so-called "neumann" boundary condition,
with a "quantum" treatment of the unbound electrons, and choose
the LDA exchange functional (which is also the default). This
model is set up as

Using Ion-Sphere model
Ion-sphere model parameters:

Spin-polarized : False
Number of electrons 13

Exchange functional : lda_x
Correlation functional : lda_c_pw
Boundary condition ! neumann
Unbound electron treatment 1 quantum
shift KS potential : True

Fig. 4: Auto-generated print
models. ISModel object.

statement from calling the

from atoMEC import models
model = models.ISModel (Al,
xfunc_id="1da_x",

bc="neumann",
unbound="quantum")

By default, the above code prints the output shown in Fig.
4. The first (and only mandatory) input parameter to the
models.ISModel object is the At om object that we generated
earlier. Together with the optional spinpol and spinmag
parameters in the models.ISModel object, this sets either the
total number of electrons (spinpol=False) or the number of
electrons in each spin channel (spinpol=True).

The remaining information displayed in Fig. 4 shows directly
the chosen model parameters, or the default values where these
parameters are not specified. The exchange and correlation func-
tionals - set by the parameters xfunc_id and cfunc_id - are
passed to the LIBXC library [LSOMI18] for processing. So far,
only the "local density" family of approximations is available in
atoMEC, and thus the default values are usually a sensible choice.
For more information on exchange and correlation functionals,
there is a number of reviews in the literature, for example Ref.
[CMSY12].

This stage of the average-atom calculation, i.e. the specifica-
tion of the model and the choices of approximation within that, is
shown in the second row of Fig. 2.

ISModel.CalcEnergy: SCF calculation and numerical parameters

Once the physical parameters and model has been defined, the
next stage in the average-atom calculation (or indeed any DFT
calculation) is the SCF procedure. In atoMEC, this is invoked
by the ISModel.CalcEnergy function. This function is called
CalcEnergy because it finds the KS orbitals (and associated KS
density) which minimize the total free energy.

Clearly, there are various mathematical and algorithmic
choices in this calculation. These include, for example, the basis in
which the KS orbitals and potential are represented; the algorithim
used to solve the KS equations (2); and how to ensure smooth
convergence of the SCF cycle. In atoMEC, the SCF procedure
currently follows a single pre-determined algorithm, which we
briefly review below.

In atoMEC, we represent the radial KS quantities (orbitals,
density and potential) on a logarithmic grid, i.e. x = log(r).
Furthermore, we make a transformation of the orbitals Py (x) =
X (x)ex/ 2. Then the equations to be solve become:

d2]%1(x)
dx2

2
W(x) = vs[n](x) + % (l + %) e (8)

- 262X(W(x) - gnl)Pnl (X) =0 (7)
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In atoMEC, we solve the KS equations using a matrix imple-
mentation of Numerov’s algorithm [PGW12]. This means we
diagonalize the following equation:

HP  =¥BP, where )
A =T+B+W(x), 10)
. 1 e
T =——¢ ¥4, 1)
. Iy =20 +7
A _ ldeO 1’ (12)

f_14*10ﬁ)4*ﬁ
St e M § 13
D ; 13)

and I_, Jo/1 are lower shift, idAentify and upper shift matrices.

The Hamiltonian matrix H is sparse and we only seek a subset
of eigenstates with lower energies: there is therefore no need to
perform a full diagonalization, which scales as & (N3), with N
being the size of the radial grid. Instead, we use SciPy’s sparse ma-
trix diagonalization function scipy.sparse.linalg.eigs,
which scales more efficiently and allows us to go to larger grid
sizes.

After each step in the SCF cycle, the relative changes in the
free energy F, density n(r) and potential vs(r) are computed.
Specifically, the quantities computed are

i piel
AF :‘FFIIV (14)
_ Jdrjn'(r) —n" ()]
An o [drri(r) 15
P el
W L) ) »

Jdrvi(r)
Once all three of these metrics fall below a certain threshold, the
SCF cycle is considered converged and the calculation finishes.
The SCF cycle is an example of a non-linear system and thus
is prone to chaotic (non-convergent) behaviour, and consequently
a range of techniques have been developed to ensure convergence
[SMO1]. Fortunately, the tendency for calculations not to converge
becomes less likely for temperatures above zero (and especially
as temperature increases). Therefore we have implemented only
a simple linear mixing scheme in atoMEC. The potential used in
each diagonilization step of the SCF cycle is not simply the one
generated from the most recent density, but a mix of that potential
and the previous one,

W) = al(r)+ (1= api (). an

In general, a lower value of the mixing fraction o makes the
SCF cycle more stable, but requires more iterations to converge.
Typically a choice of &t = 0.5 gives a reasonable balance between
speed and stability.

We can thus summarize the key parameters in an SCF calcu-
lation as follows:

¢ The maximum number of eigenstates to compute, in terms
of both the principal and angular quantum numbers

o The numerical grid parameters, in particular the grid size

o The convergence tolerances, Egs. (14) to (16)

e The SCF parameters, i.e. the mixing fraction and the
maximum number of iterations

The first three items in this list essentially control the accuracy
of the calculation. In principle, for each SCF calculation - i.e. a
unique set of physical and model inputs - these parameters should
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be independently varied until some property (such as the total
free energy) is considered suitably converged with respect to that
parameter. Changing the SCF parameters should not affect the
final results (within the convergence tolerances), only the number
of iterations in the SCF cycle.

Let us now consider an example SCF calculation, using the
Atom and model objects we have already defined:

from atoMEC import config
config.numcores =

-1 # parallelize

nmax = P c 1 quantt
Ilmax = a quantu
# run SCF calculation

scf_out = model.CalcEnergy (

nmax,

lmax,

grid_params={"ngrid": 1500},
scf_params={"mixfrac": 0.7},

)

We see that the first two parameters passed to the CalcEnergy
function are the nmax and 1max quantum numbers, which specify
the number of eigenstates to compute. Precisely speaking, there
is a unique Hamiltonian for each value of the angular quantum
number / (and in a spin-polarized calculation, also for each
spin quantum number). The sparse diagonilization routine then
computes the first nmax eigenvalues for each Hamiltonian. In
atoMEC, these diagonilizations can be run in parallel since they
are independent for each value of /. This is done by setting the
config.numcores variable to the number of cores desired
(config.numcores=-1 uses all the available cores) and han-
dled via the joblib library [Job20].

The remaining parameters passed to the CalcEnergy func-
tion are optional; in the above, we have specified a grid size
of 1500 points and a mixing fraction & = 0.7. The above code
automatically prints the output seen in Fig. 5. This output shows
the SCF cycle and, upon completion, the breakdown of the total
free energy into its various components, as well as other useful
information such as the KS energy levels and their occupations.

Addtionally, the output of the SCF function is a dictionary
containing the staticKS.Orbitals, staticKS.Density,
staticKS.Potential and staticKS.Density objects.
For example, one could extract the eigenfunctions as

orbs = scf_out["orbitals"]
ks_eigfuncs = orbs.eigfuncs # eigenfunctions

# orbs object

The initialization of the SCF procedure is shown in the third and
fourth rows of Fig. 2, with the SCF procedure itself shown in the
remaining rows.

This completes the section on the code structure and
algorithmic details. As discussed, with the output of an
SCF calculation, there are various kinds of postprocessing
one can perform to obtain other properties of interest. So
far in atoMEC, these are limited to the computation of
the pressure (ISModel.CalcPressure), the electron
localization function (atoMEC.postprocess.ELFTools)
and the Kubo-Greenwood conductivity
(atoMEC.postprocess.conductivity). We refer
readers to our pre-print [CKC22] for details on how the electron
localization function and the Kubo-Greenwood conductivity can
be used to improve predictions of the mean ionization state.
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Starting SCF energy calculation

iscf E_free (Ha) dE (1.0e-05) dn (1.0e-04) dv (1.0e-84)
0} -216.1179670 1.000e+00 9.99%-01 1.000e+00
1 -220.6199616 2.041e-082 1.085e+00 6.05%e-01
2 -235.9883271 6.512e-82 9.080e-081 4,566e-01
3 -241.8225927 2.413e-82 2.546e-081 1.375e-081
4 -241.9763320 6.353e-04 4.718e-02 4.18Te-02
5 -241.9805988 1.763e-05 5.460e-03 1.517e-02
6 -241.98089112 1.291e-86 2.035e-083 5.778e-03
7 -241.9801006 3.350e-06 7.82%e-p4 2.33%e-03
8 -241.9801034 1.141e-068 2.843e-04 9.081e-04
9 -241.9801024 4.152e-09 1.084e-04 3.559e-04
18 -241.9801016 3.170e-089 4.137e-05 1.406e-04
11 -241.9801013 1.603e-89 1.590e-85 5.593e-05
SCF cycle converged
Final energies (Ha)
Kinetic energy H 240.0058
orbitals : 240.0058
unbound ideal approx. : 0.0000
Electron-nuclear energy : -573.3573
Hartree energy : 168.6872
Exchange-correlation energy 1 -17.3165
exchange : -16.3789
correlation : -0.9376
Total energy -241.9808
Entropy : 0.0800
orbitals : 0.0000
unbound ideal approx. 1 0.06006
Total free energy -241.9888
Chemical potential -0.145
Mean ionization state 0.000

0Orbital eigenvalues (Ha) :

| n=l+1 | 2 | 3
----- Fommm oo
1=0 | -54.889 | -3.676 | -08.169
1| -2.385| 0.858 | 1.659
2| @.411 | 1.927 | 4.595

| n=l+1 | 2| 3

----- e S

1=6 | 2.000 | 2.000 | 2.000

1] 6.000 | 0.000 | 0.008

2| ©0.000 | 0.000 | 0.000
Fig. 5: Auto-generated print statement from calling the

ISModel.CalcEnergy function

Case-study: Helium

In this section, we consider an application of atoMEC in the
WDM regime. Helium is the second most abundant element in
the universe (after Hydrogen) and therefore understanding its
behaviour under a wide range of conditions is important for
our understanding of many astrophysical processes. Of particular
interest are the conditions under which Helium is expected to
undergo a transition from insulating to metallic behaviour in
the outer layers of white dwarfs, which are characterized by
densities of around 1 —20 g cm™ and temperatures of 10 — 50
kK [PR20]. These conditions are a typical example of the WDM
regime. Besides predicting the point at which the insulator-to-
metallic transition occurs in the density-temperature spectrum,
other properties of interest include equation-of-state data (relating

DOS

Fig. 6: Helium density-of-states (DOS) as a function of energy, for
different mass densities p,,, and at temperature T = 50 kK. Black
dots indicate the occupations of the electrons in the permitted energy
ranges. Dashed black lines indicate the band-gap (the energy gap
between the insulating and conducting bands). Between 5 and 6
g em™3, the band-gap disappears.

pressure, density and temperature) and electrical conductivity.

To calculate the insulator-to-metallic transition point, the
key quantity is the electronic band-gap. The concept of band-
structures is a complicated topic, which we try to briefly describe
in layman’s terms. In solids, electrons can occupy certain energy
ranges - we call these the energy bands. In insulating materials,
there is a gap between these energy ranges which electrons are
forbidden from occupying - this is the so-called band-gap. In
conducting materials, there is no such gap, and therefore electrons
can conduct electricity because they can be excited into any part of
the energy spectrum. Therefore, a simple method to determine the
insulator-to-metallic transition is determine the density at which
the band-gap becomes zero.

In Fig. 6, we plot the density-of-states (DOS) as a function
of energy, for different densities and at fixed temperature 7 = 50
kK. The DOS shows the energy ranges which the electrons are
allowed to occpy; we also show the actual energies occupied by
the electrons (according to Fermi-Dirac statistics) with the black
dots. We can clearly see in this figure that the band-gap (the region
where the DOS is zero) becomes smaller as a function of density.
From this figure, it seems the transition from insulating to metallic
state happens somewhere between 5 and 6 g cm 3.

In Fig. 7, we plot the band-gap as a function of density, for a
fixed temperature T = 50 kK. Visually, it appears that the relation-
ship between band-gap and density is linear at this temperature.
This is confirmed using a linear fit, which has a coefficient of
determination value of almost exactly one, R? = 0.9997. Using this
fit, the band-gap is predicted to close at 5.5 g cm™3. Also in this
figure, we show the fraction of ionized electrons, which is given
by Z/Ne, using Eq. 6 to calculate Z and N, being the total electron
number. The ionization fraction also relates to the conductivity of
the material, because ionized electrons are not bound to any nuclei
and therefore free to conduct electricity. We see that the ionization
fraction mostly increases with density (excepting some strange
behavior around p, =1 g cm—3), which is further evidence of the
transition from insulating to conducting behaviour with increasing
density.

As a final analysis, we plot the pressure as a function of mass
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Fig. 7: Band-gap (red circles) and ionization fraction (blue squares)
for Helium as a function of mass density, at temperature T = 50 kK.
The relationship between the band-gap and the density appears to be
linear.
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Fig. 8: Helium pressure (logarithmic scale) as a function of mass
density and temperature. The pressure increases with density and
temperature (as expected), with a stronger dependence on density.

density and temperature in Fig. 8. The pressure is given by the
sum of two terms: (i) the electronic pressure, calculated using
the method described in Ref. [FB19], and (ii) the ionic pressure,
calculated using the ideal gas law. We observe that the pressure
increases with both density and temperature, which is the expected
behaviour. Under these conditions, the density dependence is
much stronger, especially for higher densities.

The code required to generate the above results and plots can
be found in this repository.

Conclusions and future work

In this paper, we have presented atoMEC: an average-atom Python
code for studying materials under extreme conditions. The open-
source nature of atoMEC, and the choice to use (pure) Python as
the programming language, is designed to improve the accessibil-
ity of average-atom models.

We gave significant attention to the code structure in this
paper, and tried as much as possible to connect the functions
and objects in the code with the underyling theory. We hope that
this not only improves atoMEC from a user perspective, but also
facilitates new contributions from the wider average-atom, WDM
and scientific Python communities. Another aim of the paper was
to communicate how atoMEC benefits from a strong ecosystem
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of open-source scientific libraries - especially the Python libraries
NumPy, SciPy, joblib and mendeleev, as well as LIBXC.

We finish this paper by emphasizing that atoMEC is still in the
early stages of development, and there are many opportunities to
improve and extend the code. These include, for example:

e Adding new average-atom models, and different approxi-
mations to the exisiting models.ISModel model;

e Optimizing the code, in particular the routines in the
numerov module;

e Adding new postprocessing functionality, for example to
compute structure factors;

« Improving the structure and design choices of the code.

Of course, these are just a snapshot of the avenues for future
development in atoMEC. We are open to contributions in these
areas and many more besides.

Acknowledgements

This work was partly funded by the Center for Advanced Systems
Understanding (CASUS) which is financed by Germany’s Federal
Ministry of Education and Research (BMBF) and by the Saxon
Ministry for Science, Culture and Tourism (SMWK) with tax
funds on the basis of the budget approved by the Saxon State
Parliament.

REFERENCES

[BDM*20] M. Bonitz, T. Dornheim, Zh. A. Moldabekov, S. Zhang,
P. Hamann, H. Kihlert, A. Filinov, K. Ramakrishna, and J. Vor-
berger. Ab initio simulation of warm dense matter. Phys. Plas-
mas, 27(4):042710, 2020. doi1:10.1063/1.5143225.
Roi Baer, Daniel Neuhauser, and Eran Rabani. Self-
averaging stochastic kohn-sham density-functional theory.
Phys. Rev. Lett., 111:106402, Sep 2013. URL: https:/
link.aps.org/doi/10.1103/PhysRevLett.111.106402, doi:10.
1103/PhysRevLett.111.106402.

Felix Brockherde, Leslie Vogt, Li Li, Mark E. Tuckerman,
Kieron Burke, and Klaus-Robert Miiller. Bypassing the kohn-
sham equations with machine learning. Nature Communica-
tions, 8(1):872, Oct 2017. doi1:10.1038/s41467-017~
00839-3.

[CHKC22] T. J. Callow, S. B. Hansen, E.
A. Cangi. First-principles
of density-functional average-atom models. Phys.
Rev.  Research, 4:023055, Apr 2022. URL:
https://link.aps.org/doi/10.1103/PhysRevResearch.4.023055,
doi:10.1103/PhysRevResearch.4.023055.
Timothy J. Callow, Eli Kraisler, and Attila Cangi. Accurate
and efficient computation of mean ionization states with an
average-atom kubo-greenwood approach, 2022. URL: https://
arxiv.org/abs/2203.05863, doi:10.48550/ARXIV.2203.
05863.

Timothy  Callow, Daniel Kotik, Ekaterina Tsve-
toslavova Stankulova, Eli Kraisler, and Attila Cangi.
atomec, August 2021. If you use this software, please cite it
using these metadata. doi:10.5281/zenodo.5205719.
Aron J. Cohen, Paula Mori-Sdnchez, and Weitao Yang.
Challenges for density functional theory. Chemical Re-
views, 112(1):289-320, 2012. PMID: 22191548. arXiv:
https://doi.org/10.1021/cr200107z, doi:10.
1021/cr200107z.

Yael Cytter, Eran Rabani, Daniel Neuhauser, and Roi Baer.
Stochastic density functional theory at finite temperatures.
Phys. Rev. B, 97:115207, Mar 2018. URL: https://link.
aps.org/doi/10.1103/PhysRevB.97.115207, doi:10.1103/
PhysRevB.97.115207.

Tobias Dornheim, Simon Groth, and Michael Bonitz. The
uniform electron gas at warm dense matter conditions. Phys.
Rep., 744:1 — 86, 2018. URL: http://www.sciencedirect.
com/science/article/pii/S0370157318300516, doi:https:
//doi.org/10.1016/7j.physrep.2018.04.001.

[BNR13]

[BVLT17]

Kraisler, and
derivation and properties

[CKC22]

[CKTS*21]

[CMSY12]

[CRNB18]

[DGB18]


https://github.com/atomec-project/Helium-white-dwarfs
https://doi.org/10.1063/1.5143225
https://link.aps.org/doi/10.1103/PhysRevLett.111.106402
https://link.aps.org/doi/10.1103/PhysRevLett.111.106402
https://doi.org/10.1103/PhysRevLett.111.106402
https://doi.org/10.1103/PhysRevLett.111.106402
https://doi.org/10.1038/s41467-017-00839-3
https://doi.org/10.1038/s41467-017-00839-3
https://link.aps.org/doi/10.1103/PhysRevResearch.4.023055
https://doi.org/10.1103/PhysRevResearch.4.023055
https://arxiv.org/abs/2203.05863
https://arxiv.org/abs/2203.05863
https://doi.org/10.48550/ARXIV.2203.05863
https://doi.org/10.48550/ARXIV.2203.05863
https://doi.org/10.5281/zenodo.5205719
http://arxiv.org/abs/https://doi.org/10.1021/cr200107z
http://arxiv.org/abs/https://doi.org/10.1021/cr200107z
https://doi.org/10.1021/cr200107z
https://doi.org/10.1021/cr200107z
https://link.aps.org/doi/10.1103/PhysRevB.97.115207
https://link.aps.org/doi/10.1103/PhysRevB.97.115207
https://doi.org/10.1103/PhysRevB.97.115207
https://doi.org/10.1103/PhysRevB.97.115207
http://www.sciencedirect.com/science/article/pii/S0370157318300516
http://www.sciencedirect.com/science/article/pii/S0370157318300516
https://doi.org/https://doi.org/10.1016/j.physrep.2018.04.001
https://doi.org/https://doi.org/10.1016/j.physrep.2018.04.001

ATOMEC: AN OPEN-SOURCE AVERAGE-ATOM PYTHON CODE

[EFP*21]

[FB19]

[GDRT14]

[GFG™16]

[HK64]

[HMvdW+20]

[HRDOS]

[Job20]

[KDFT11]

[Koh99]

[KS65]

[LSOM18]

[menl14]

[Mer65]

J. A. Ellis, L. Fiedler, G. A. Popoola, N. A. Modine, J. A.
Stephens, A. P. Thompson, A. Cangi, and S. Rajamanickam.
Accelerating finite-temperature kohn-sham density functional
theory with deep neural networks. Phys. Rev. B, 104:035120,
Jul 2021. URL: https://link.aps.org/doi/10.1103/PhysRevB.
104.035120, do1:10.1103/PhysRevB.104.035120.
Gérald Faussurier and Christophe Blancard. Pressure in
warm and hot dense matter using the average-atom model.
Phys. Rev. E, 99:053201, May 2019. URL: https://link.
aps.org/doi/10.1103/PhysRevE.99.053201, doi:10.1103/
PhysRevE.99.053201.

Frank Graziani, Michael P Desjarlais, Ronald Redmer, and
Samuel B Trickey. Frontiers and challenges in warm dense
matter, volume 96. Springer Science & Business, 2014. doi :
10.1007/978-3-319-04912-0.

S H Glenzer, L B Fletcher, E Galtier, B Nagler, R Alonso-
Mori, B Barbrel, S B Brown, D A Chapman, Z Chen, C B
Curry, F Fiuza, E Gamboa, M Gauthier, D O Gericke, A Glea-
son, S Goede, E Granados, P Heimann, J Kim, D Kraus,
M J MacDonald, A J Mackinnon, R Mishra, A Ravasio,
C Roedel, P Sperling, W Schumaker, Y Y Tsui, J Vor-
berger, U Zastrau, A Fry, W E White, ] B Hasting, and
H J Lee. Matter under extreme conditions experiments at
the Linac Coherent Light Source. J. Phys. B, 49(9):092001,
apr 2016. URL: https://doi.org/10.1088%2F0953-4075%
2F49%2F9%2F092001, doi:10.1088/0953-4075/49/
9/092001.

P. Hohenberg and W. Kohn. Inhomogeneous electron
gas. Phys. Rev., 136(3B):B864-B871, Nov 1964. URL:
http://link.aps.org/doi/10.1103/PhysRev.136.B864, doi:10.
1103/PhysRev.136.B864.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerk-
wijk, Matthew Brett, Allan Haldane, Jaime Ferndndez del Rio,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357-362, September 2020.
doi:10.1038/s41586-020-2649-2.

Bastian Holst, Ronald Redmer, and Michael P. Desjar-
lais. Thermophysical properties of warm dense hy-
drogen using quantum molecular dynamics simulations.
Phys. Rev. B, 77:184201, May 2008. URL: https:/link.
aps.org/doi/10.1103/PhysRevB.77.184201, doi:10.1103/
PhysRevB.77.184201.

Joblib Development Team. Joblib: running python functions
as pipeline jobs. https://joblib.readthedocs.io/, 2020.

A. L. Kritcher, T. Doppner, C. Fortmann, T. Ma, O. L. Landen,
R. Wallace, and S. H. Glenzer. In-flight measurements of cap-
sule shell adiabats in laser-driven implosions. Phys. Rev. Lett.,
107:015002, Jul 2011. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.107.015002, doi:10.1103/PhysRevLett.
107.015002.

'W. Kohn. Nobel lecture: Electronic structure of matter—wave
functions and density functionals. Rev. Mod. Phys., 71:1253—
1266, 10 1999. URL: https://link.aps.org/doi/10.1103/
RevModPhys.71.1253, doi:10.1103/RevModPhys.71.
1253.

W. Kohn and L. J. Sham. Self-consistent equations
including exchange and correlation effects. Phys.
Rev., 140(4A):A1133-A1138, Nov  1965. URL:
http://link.aps.org/doi/10.1103/PhysRev.140.A1133,
doi:10.1103/PhysRev.140.A1133.

Susi Lehtola, Conrad Steigemann, Micael J.T. Oliveira, and
Miguel A.L. Marques. Recent developments in libxc — a com-
prehensive library of functionals for density functional theory.
SoftwareX, 7:1-5, 2018. URL: https://www.sciencedirect.
com/science/article/pii/S2352711017300602, doi:https:
//doi.org/10.1016/3j.s0ftx.2017.11.002.
mendeleev — a python resource for properties of chemical
elements, ions and isotopes, ver. 0.9.0. https:/github.com/
Immentel/mendeleev, 2014.

N. D. Mermin. Thermal properties of the inhomogenous
electron gas. Phys. Rev., 137:A: 1441, 1965. URL: https:
/Mink.aps.org/doi/10.1103/PhysRev.137.A1441.

[PGW12]

[PPF*11]

[PR20]

[Roz91]

[SMO1]

[SPST14]

[SRHT12]

[SS14]

[Stal6]

[STIT14]

[VGO™20]

9

Mohandas Pillai, Joshua Goglio, and Thad G. Walker. Matrix
numerov method for solving schrodinger’s equation. Amer-
ican Journal of Physics, 80(11):1017-1019, 2012. arXiv:
https://doi.org/10.1119/1.4748813, doi:10.
1119/1.4748813.

S. Pittalis, C. R. Proetto, A. Floris, A. Sanna, C. Bersier,
K. Burke, and E. K. U. Gross. Exact conditions in finite-
temperature density-functional theory.  Phys. Rev. Lett.,
107:163001, Oct 2011. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.107.163001, doi:10.1103/PhysRevLett.
107.163001.

Martin Preising and Ronald Redmer. Metallization of dense
fluid helium from ab initio simulations. Phys. Rev. B,
102:224107, Dec 2020. URL.: https://link.aps.org/doi/10.1103/
PhysRevB.102.224107, doi:10.1103/PhysRevB.102.
224107.

Balazs F. Rozsnyai. Photoabsorption in hot plasmas based
on the ion-sphere and ion-correlation models. Phys. Rev. A,
43:3035-3042, Mar 1991. URL: https://link.aps.org/doi/10.
1103/PhysRevA.43.3035, doi:10.1103/PhysRevA.43.
3035.

H. B. Schlegel and J. J. W. McDouall. Do You Have SCF Sta-
bility and Convergence Problems?, pages 167-185. Springer
Netherlands, Dordrecht, 1991. doi:10.1007/978-94-
011-3262-6_2.

A. N. Souza, D. J. Perkins, C. E. Starrett, D. Saumon,
and S. B. Hansen. Predictions of x-ray scattering spec-
tra for warm dense matter. Phys. Rev. E, 89:023108, Feb
2014. URL: https://link.aps.org/doi/10.1103/PhysRevE.89.
023108, doi:10.1103/PhysRevE.89.023108.

John C. Snyder, Matthias Rupp, Katja Hansen, Klaus-Robert
Miiller, and Kieron Burke. Finding density functionals
with machine learning. Phys. Rev. Lett., 108:253002, Jun
2012. URL: https://link.aps.org/doi/10.1103/PhysRevLett.108.
253002, doi:10.1103/PhysRevLett.108.253002.
C.E. Starrett and D. Saumon. A simple method for determining
the ionic structure of warm dense matter. High Energy Density
Physics, 10:35-42, 2014. URL: https://www.sciencedirect.
com/science/article/pii/S1574181813001900, doi:https:
//doi.org/10.1016/7j.hedp.2013.12.001.

C.E. Starrett. Kubo—greenwood approach to conductivity in
dense plasmas with average atom models. High Energy Den-
sity Physics, 19:58—64, 2016. URL: https://www.sciencedirect.
com/science/article/pii/S1574181816300398, doi:https:
//doi.org/10.1016/7.hedp.2016.04.001.
Sang-Kil Son, Robert Thiele, Zoltan Jurek, Beata Ziaja, and
Robin Santra. Quantum-mechanical calculation of ionization-
potential lowering in dense plasmas. Phys. Rev. X, 4:031004,
Jul 2014. URL: https://link.aps.org/doi/10.1103/PhysRevX.4.
031004, doi1:10.1103/PhysRevX.4.031004.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Sté-
fan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, ilhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antdnio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy
1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261-272,
2020. doi:10.1038/s41592-019-0686-2.


https://link.aps.org/doi/10.1103/PhysRevB.104.035120
https://link.aps.org/doi/10.1103/PhysRevB.104.035120
https://doi.org/10.1103/PhysRevB.104.035120
https://link.aps.org/doi/10.1103/PhysRevE.99.053201
https://link.aps.org/doi/10.1103/PhysRevE.99.053201
https://doi.org/10.1103/PhysRevE.99.053201
https://doi.org/10.1103/PhysRevE.99.053201
https://doi.org/10.1007/978-3-319-04912-0
https://doi.org/10.1007/978-3-319-04912-0
https://doi.org/10.1088%2F0953-4075%2F49%2F9%2F092001
https://doi.org/10.1088%2F0953-4075%2F49%2F9%2F092001
https://doi.org/10.1088/0953-4075/49/9/092001
https://doi.org/10.1088/0953-4075/49/9/092001
http://link.aps.org/doi/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1038/s41586-020-2649-2
https://link.aps.org/doi/10.1103/PhysRevB.77.184201
https://link.aps.org/doi/10.1103/PhysRevB.77.184201
https://doi.org/10.1103/PhysRevB.77.184201
https://doi.org/10.1103/PhysRevB.77.184201
https://joblib.readthedocs.io/
https://link.aps.org/doi/10.1103/PhysRevLett.107.015002
https://link.aps.org/doi/10.1103/PhysRevLett.107.015002
https://doi.org/10.1103/PhysRevLett.107.015002
https://doi.org/10.1103/PhysRevLett.107.015002
https://link.aps.org/doi/10.1103/RevModPhys.71.1253
https://link.aps.org/doi/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.71.1253
https://doi.org/10.1103/RevModPhys.71.1253
http://link.aps.org/doi/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://www.sciencedirect.com/science/article/pii/S2352711017300602
https://www.sciencedirect.com/science/article/pii/S2352711017300602
https://doi.org/https://doi.org/10.1016/j.softx.2017.11.002
https://doi.org/https://doi.org/10.1016/j.softx.2017.11.002
https://github.com/lmmentel/mendeleev
https://github.com/lmmentel/mendeleev
https://link.aps.org/doi/10.1103/PhysRev.137.A1441
https://link.aps.org/doi/10.1103/PhysRev.137.A1441
http://arxiv.org/abs/https://doi.org/10.1119/1.4748813
http://arxiv.org/abs/https://doi.org/10.1119/1.4748813
https://doi.org/10.1119/1.4748813
https://doi.org/10.1119/1.4748813
https://link.aps.org/doi/10.1103/PhysRevLett.107.163001
https://link.aps.org/doi/10.1103/PhysRevLett.107.163001
https://doi.org/10.1103/PhysRevLett.107.163001
https://doi.org/10.1103/PhysRevLett.107.163001
https://link.aps.org/doi/10.1103/PhysRevB.102.224107
https://link.aps.org/doi/10.1103/PhysRevB.102.224107
https://doi.org/10.1103/PhysRevB.102.224107
https://doi.org/10.1103/PhysRevB.102.224107
https://link.aps.org/doi/10.1103/PhysRevA.43.3035
https://link.aps.org/doi/10.1103/PhysRevA.43.3035
https://doi.org/10.1103/PhysRevA.43.3035
https://doi.org/10.1103/PhysRevA.43.3035
https://doi.org/10.1007/978-94-011-3262-6_2
https://doi.org/10.1007/978-94-011-3262-6_2
https://link.aps.org/doi/10.1103/PhysRevE.89.023108
https://link.aps.org/doi/10.1103/PhysRevE.89.023108
https://doi.org/10.1103/PhysRevE.89.023108
https://link.aps.org/doi/10.1103/PhysRevLett.108.253002
https://link.aps.org/doi/10.1103/PhysRevLett.108.253002
https://doi.org/10.1103/PhysRevLett.108.253002
https://www.sciencedirect.com/science/article/pii/S1574181813001900
https://www.sciencedirect.com/science/article/pii/S1574181813001900
https://doi.org/https://doi.org/10.1016/j.hedp.2013.12.001
https://doi.org/https://doi.org/10.1016/j.hedp.2013.12.001
https://www.sciencedirect.com/science/article/pii/S1574181816300398
https://www.sciencedirect.com/science/article/pii/S1574181816300398
https://doi.org/https://doi.org/10.1016/j.hedp.2016.04.001
https://doi.org/https://doi.org/10.1016/j.hedp.2016.04.001
https://link.aps.org/doi/10.1103/PhysRevX.4.031004
https://link.aps.org/doi/10.1103/PhysRevX.4.031004
https://doi.org/10.1103/PhysRevX.4.031004
https://doi.org/10.1038/s41592-019-0686-2

	Introduction
	Theoretical background
	Code structure and details
	atoMEC.Atom: Physical parameters
	atoMEC.models: model parameters
	ISModel.CalcEnergy: SCF calculation and numerical parameters

	Case-study: Helium
	Conclusions and future work
	Acknowledgements
	References

